





Mod 7 ■ Array W into 7 equivalence classes. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 continue in this manner Every number under 2 is equivalent to 2. 16 = 23(mod 7) a ≡ b (mod m) if a and b when divided by m yield the same remainder.

In which equivalence class and row in the array is 399?	57 7)399
 Need to know the remainder when 399 is divided by 7. 	- 35
Remainder is 0 so 399 is in the 0 equivalence class.	49 - 49
 The quotient is 57 so 399 is in 57th row down under the heading row. 	

Equivalency Without the Array

- To determine whether or not two numbers belong to the same equivalence class in a mod system
 - Divide each of the numbers by the mo
 - If the remainders are the same the two numbers are equivalent and they both belong to the equivalence classed named by the remainder.
 - If the remainders are not the same the two numbers are not equivalent in that mod.
 - 38 = 62 (mod 6). Call them 2 (mod 6)

In-class Assignment 23 - 5