

Subsets

- A set B is a subset of a set A if every element in set B is an element of set A.
 - $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{2, 7\}$
 - B is a subset of A
- The notation for a subset is $B \subseteq A$.
- A set B is a proper subset of a set A if B is a subset of A and if n(B) < n(B.
- The notation for a proper subset is $B \subseteq A$.

In-class Assignment 2 -

Subset or Element

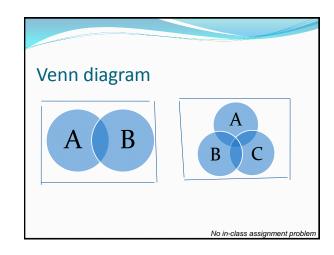
- It is important to know the distinction between an element and a subset.
- To use the element sign, the element must be in the set braces or implied to be in the set braces.
 - $7 \in x$ | x is an odd number or $4 \in 1,2,3,4,5$
- To use the subset sign, ⊆ or ⊂ either one, both sides of the sign must be sets.
 - $2.4 \subset 1.2.3.4$ or $A \subseteq D$
- Both signs can be negated.
 ∉ and
 ⊄

In-Class Assignment, 2 – 2

How Many Subsets for a Set?

• To determine the number of subsets a given set, *S*, may have use the formula below.

 $2^{n(S)}$


• 2 because each element has 2 choices – it is in the set or it is not in the set.

In-class Assignment 2 - 3,

Venn Diagrams

- A Venn diagram is a way of visualizing the relationship among several sets.
 - A closed area usually a rectangle represents the universal set.
 - Circles or closed areas within the universal set represents the sets under discussion.

No in-class assignment problem

Sets to Know

 The set of natural numbers, N, is the set that you naturally count with. This set is also known as the set of counting numbers.

$$N = \{1, 2, 3, 4, 5, ...\}$$

• The set of whole numbers, W, is the set of natural numbers along with the number o.

$$W = {0, 1, 2, 3, 4, ...}$$

- Note that N is a proper subset of W. $N \subset W$
- These are the numbers used in first and second grades.

No in-class Assignment problem

More Sets to Know

• The set of integers, I, is the set of natural numbers, o, and the negatives of the natural numbers.

$$I = \{..., -3, \ -2, \ -1, \ 0, \ 1, \ 2, \ 3, \ ...\}$$

Notice that all the whole numbers, and therefore, all the natural numbers are in I. $N \subseteq W \subseteq I$

- $\label{eq:continuous} \begin{array}{ll} \text{ The set of rational numbers, } Q, \text{ is the set of all fractions.} \\ Q = \{x | \ x \ \text{maybe written as} \frac{a}{b} \quad \text{where} \quad a \in I \ \text{and} \ b \in N \ \}. \end{array}$
 - Notice that the definition says that o can not be in the denominator.
- These sets of numbers are called nested sets. That is $N \subset W \subset I \subset Q$.

In-class Assignment 2 – 5, 6, 7