# Discovering Computers

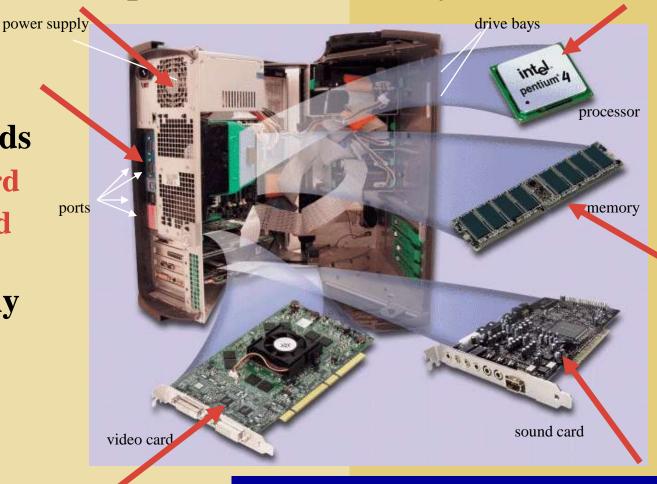
FUNDAMENTALS, Second Edition



# **Today**

- The System Unit
  - Motherboard
  - CPU
  - Control Unit
  - ALU
  - Machine Cycle
  - System Clock
  - Data Representation
  - Memory

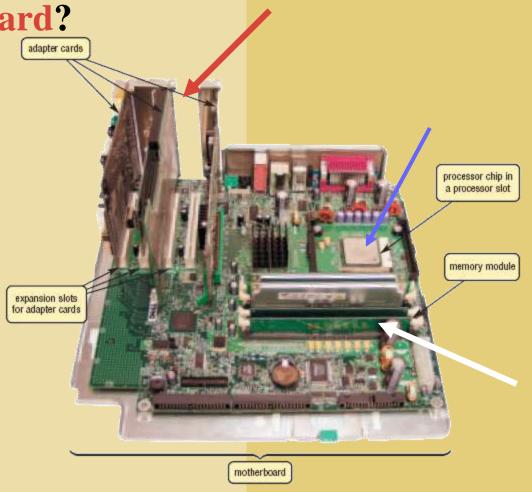
### What is the system unit?


Case that contains electronic components of the computer used to process data



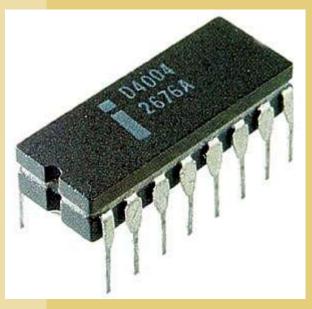


# What are common components inside the system unit?


- Processor
- > Memory
- Adapter cards
  - Sound card
  - Video card
- > Ports
- Power supply






### What is the motherboard?

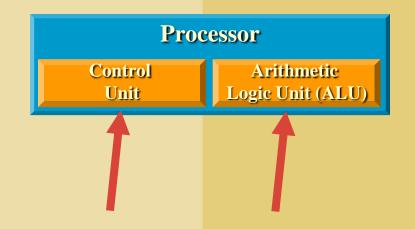
- Main circuit board in system unit
- Contains adapter cards, processor chips, and memory modules



### What is a chip?

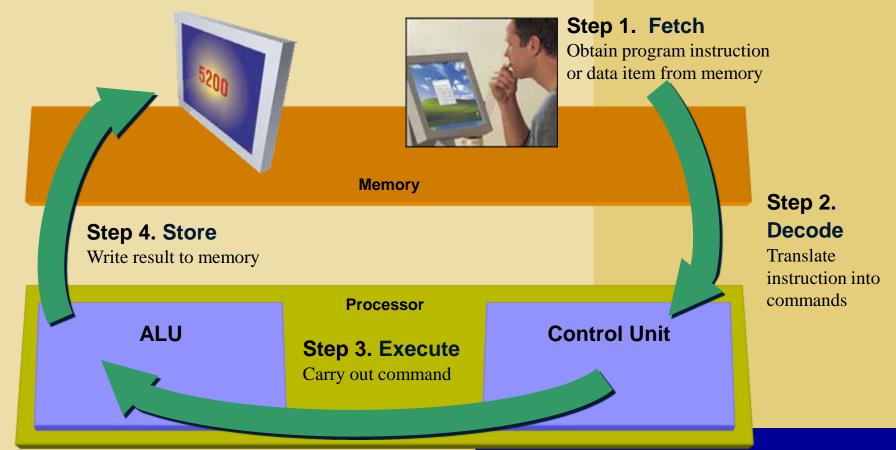
- Small piece of semi-conducting material on which integrated circuits are etched
  - Integrated circuits contain many microscopic pathways capable of carrying electrical current
- Chips are packaged so they can be attached to a circuit board




Intel's first processor



### What is the central processing unit (CPU)?


- Interprets and carries out basic instructions that operate a computer
  - Control unit directs and coordinates operations in computer
  - Arithmetic logic unit

     (ALU) performs
     arithmetic, comparison,
     and logical operations
- > Also called the processor or the "brains of the computer"



### What is a machine cycle?

Four operations of the CPU comprise a machine cycle



### What is the system clock?

- Controls timing of all computer operations
- Generates regular electronic pulses, or ticks, that set operating pace of components of system unit

Pace of system
clock is clock speed
Most clock speeds are
in the gigahertz (GHz)
range (1 GHz = one
billion ticks of system
clock per second)

### Which processor should you select?

**▶** It is a tough decision – there are many to choose from

| Intel      |                              |  |  |
|------------|------------------------------|--|--|
| Celeron D  | Budget variety – single core |  |  |
| Pentium 4  | Single core                  |  |  |
| Pentium D  | Dual core                    |  |  |
| Pentium M  | Mobile, single               |  |  |
|            | core                         |  |  |
| Core 2     |                              |  |  |
| Core 2 Duo | Dual core                    |  |  |

4 core

Core 2 Quad

# Sempron Athlon 64 Athlon 64 FX better performance Athlon 64 X2 Dual core Turion Mobile

# Morse code

| A | •-   |
|---|------|
| В |      |
| C |      |
| D |      |
| E | •    |
| F |      |
| G |      |
| Н | •••• |
| I | ••   |
| J |      |
| K |      |
| L |      |
| M |      |
|   |      |

# **Data Representation**

### How do computers represent data?

- Computers are digital
  - Recognize only two discrete states: on or off
  - Similar to dots and dashes used in Morse code
  - Use Number system with two unique digits: 0 and 1. Use a binary system to recognize two states
  - A bit is short for binary digits

| Binary | Decimal |
|--------|---------|
| 0      | 0       |
| 1      | 1       |
| 10     | 2       |
| 11     | 3       |
| 100    | 4       |
| 101    | 5       |
| 110    | 6       |
| 111    | 7       |
| 1000   | 8       |
| 1001   | 9       |
| 1010   | 10      |

# **Data Representation**

### What is a byte?

- Eight bits
- Provides enough different combinations of 0s and 1s to represent 256 individual characters

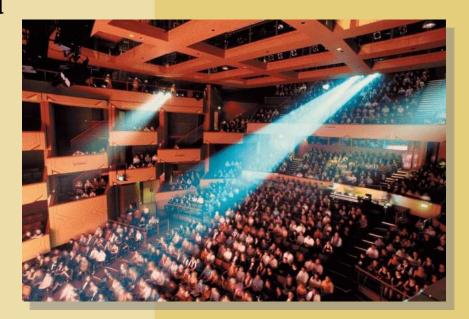


# **Data Representation**

What are two popular coding systems to represent data?

- ASCII—American Standard Code for Information Interchange
- **EBCDIC—Extended Binary Coded Decimal Interchange Code**




| AS | CII | CO | de |
|----|-----|----|----|
| AU |     |    | UU |

| ASCII     | coae           |     | <u>Binary</u>      | <u>Decimal</u> | <u>Hex</u> |                |
|-----------|----------------|-----|--------------------|----------------|------------|----------------|
| Binary    | <u>Decimal</u> | Hex | 0100 1110          | 78             | 4E         | N              |
| 0100 0001 | 65             | 41  | <u>A</u> 0100 1111 | 79             | 4F         | <u>O</u>       |
| 0100 0010 | 66             | 42  | <u>B</u> 0101 0000 | 80             | 50         | <u>P</u>       |
| 0100 0011 | 67             | 43  | <u>C</u> 0101 0001 | 81             | 51         | Q              |
| 0100 0100 | 68             | 44  | <u>D</u> 0101 0010 | 82             | 52         | <u>R</u>       |
| 0100 0101 | 69             | 45  | <u>E</u> 0101 0011 | 83             | 53         | <u>S</u>       |
| 0100 0110 | 70             | 46  | <u>F</u> 0101 0100 | 84             | 54         | T              |
| 0100 0111 | 71             | 47  | <u>G</u> 0101 0101 | 85             | 55         | <u>U</u>       |
| 0100 1000 | 72             | 48  | <u>H</u> 0101 0110 | 86             | 56         | V              |
| 0100 1001 | 73             | 49  | <u>I</u> 0101 0111 | 87             | 57         | W              |
| 0100 1010 | 74             | 4A  | <u>J</u> 0101 1000 | 88             | 58         | X              |
| 0100 1011 | 75             | 4B  | <u>K</u> 0101 1001 | 89             | 59         | Y              |
| 0100 1100 | 76             | 4C  | <u>L</u> 0101 1010 | 90             | 5A         | $ \mathbf{Z} $ |
| 0100 1101 | 77             | 4D  | <u>M</u>           |                |            |                |

# **Memory**

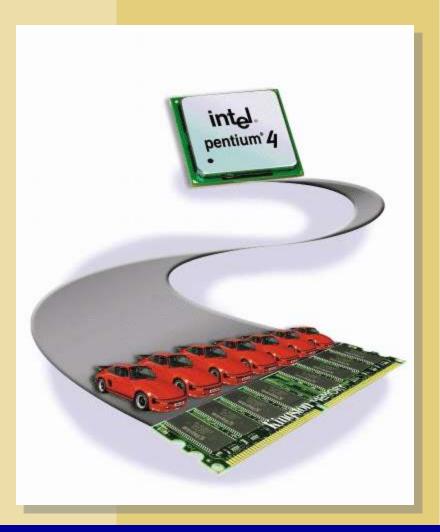
### What is memory?

- Electronic components that store instructions, data, and results
- Each byte stored in unique location called an address, similar to seats in a concert hall



# **Memory**

# How is memory measured?


By number of bytes available for storage

| Term     | Abbreviation | Approximate Size |
|----------|--------------|------------------|
| Kilobyte | KB or K      | 1 thousand bytes |
| Megabyte | MB           | 1 million bytes  |
| Gigabyte | GB           | 1 billion bytes  |
| Terabyte | ТВ           | 1 trillion bytes |

# **Buses**

#### What is a bus?

- Channel that allows devices inside and attached to the computer to communicate with each other
  - System bus connects processor and RAM
  - Bus width determines number of bits transmitted at one time
- 32-bit or 64-bit



# **Processor comparison**

|                           | Computer 1 | Computer 2 | Computer 3 |
|---------------------------|------------|------------|------------|
| Company making computer   |            |            |            |
| Company making <u>CPU</u> |            |            |            |
| CPU type                  |            |            |            |
| Memory capacity           |            |            |            |
| 32- or 64-bit?            |            |            |            |
| Single- or Dual-core?     |            |            |            |

# **Processor comparison (con't)**

|                       | Computer 4 | Computer 5 | Computer 6 |
|-----------------------|------------|------------|------------|
| Company making        |            |            |            |
| <u>computer</u>       |            |            |            |
| COMPany making        |            |            |            |
| <u>CPU</u>            |            |            |            |
| CPU type              |            |            |            |
| Memory                |            |            |            |
| capacity              |            |            |            |
| 32- or 64-bit?        |            |            |            |
| Single- or Dual-core? |            |            |            |
| Duar-core!            |            |            |            |