
1

Chapter 8 – Text Files
8.1 Managing Text Files
8.2 StreamReaders, StreamWriters, and

Structured Exception Handling
8.3 XML

8.1 Managing Text Files
• Preliminaries
• WriteAllLines Method
• Sorting a Text File
• Set Operations
• Seaching a CSV Text File
• The OpenFileDialog Control

2

3

CSV File Format
• Comma Separated Values
• Records are stored on one line with a

comma between each field
• Example: USStates.txt
 Delaware,DE,1954,759000
 Pennsylvania,PA,44817,12296000
 New Jersey,NJ,7417,8135000
 Georgia,GA,57906,7637000
 (name of state,abbreviation,area,population)

LINQ Query for USStates.txt
Dim states() As String =
 IO.File.ReadAllLines("USStates.txt")
Dim query = From line In states
 Let data = line.Split(","c)
 Let name = data(0)
 Let abbr = data(1)
 Let area = CInt(data(2))
 Let pop = CInt(data(3))
 Select name, abbr, area, pop

4

DataGridView Control
• Used to display a table of data determined

by a LINQ query.
• Found in the Data group and the All

Windows Forms group of the Toolbox.

5

DataGridView for Query from
USStates.txt

6

dgvStates.DataSource = query.ToList
dgvStates.CurrentCell = Nothing

DataGridView Headers
By default the rows have blank headers and
the column headers contain the names of the
items in the Select clause.

7

row headers
column headers

DataGridView Headers (cont.)
• Row headers can be deleted by setting the

RowHeadersVisible property of the
DataGridView control to False.

• A column header can be customized with a
statement such as

dgvStates.Columns("area").HeaderText =
 "Land Area"

8

Altered Headers

9

Data in Table
• The data appearing in the DataGridView

control can be modified by using Where
and Order By clauses in the LINQ query.
Or by changing the selection of items in
the Select clause.

• Note: The Select clause must contain two
or more items in order to use a
DataGridView control.

10

Modified Data
 Where name.StartsWith("New")
 Order By area Descending

11

12

Sorting a Text File
1. Read data from file into a string array.
2. Use a LINQ query to sort the data.
3. Write sorted data to a new file with the

WriteAllLines method.

IO.File.WriteAllLines("fileName.txt",
 strArrayOrQueryName)

File to Sort: AgeAtInaug.txt
George Washington,57
John Adams,61
Thomas Jefferson,57
James Madison,57
 .
 .

Barack Obama,47

13

Sort AgeAtInaug.txt by Age

Dim agesAtInaug() As String =
 IO.File.ReadAllLines("AgeAtInaug.txt")
Dim query = From line In agesAtInaug
 Let age = CInt(line.Split(","c)(1))
 Order By age
 Select line
IO.File.WriteAllLines("Sorted.txt", query)

14

File Sorted.txt
Theodore Roosevelt,42
John Kennedy,43
Ulysses Grant,46
Bill Clinton,46
 .
 .
Ronald Reagan,69

15

Ways to Combine Two Files
• Merge (with or without duplications)
• Create a file consisting of the items

appearing in both files
• Delete items appearing in one file from

the other file

The tasks above are carried out with the
Set operations on arrays.

16

Set Operations on Arrays
• Concat – merges with duplications
• Union – merges without duplications
• Intersect – finds common items
• Except – deletes items in one array from

the other array

17

Concat Operation
array1.Concat(array2).ToArray consists of
the merge of the two arrays
Dim array1() = {"Alpha", "Bravo", "Charlie"}
Dim array2() = {"Bravo", "Delta"}
Dim array3() = array1.Concat(array2).ToArray

Size of array3: 5
Elements of array3: "Alpha", "Bravo",
"Charlie", "Bravo", "Delta"

 18

Union Operation
array1.Union(array2).ToArray consists of the
merge of the two arrays without duplications
Dim array1() = {"Alpha", "Bravo", "Charlie"}
Dim array2() = {"Bravo", "Delta"}
Dim array3() = array1.Union(array2).ToArray

Size of array3: 4

Elements of array3: "Alpha", "Bravo",
 "Charlie", "Delta"

19

Intersect Operation
array1.Intersect(array2).ToArray consists of the
items in both arrays
Dim array1() = {"Alpha", "Bravo", "Charlie"}
Dim array2() = {"Bravo", "Delta"}
Dim array3() = array1.Intersect(array2).ToArray

Size of array3: 1
Elements of array3: "Bravo"

20

Except Operation
array1.Except(array2).ToArray consists of the
items in array1 that are not in array2
Dim array1() = {"Alpha", "Bravo", "Charlie"}
Dim array2() = {"Bravo", "Delta"}
Dim array3() = array1.Except(array2).ToArray

Size of array3: 2
Elements of array3: "Alpha", "Charlie"

21

Steps to Combine Two Files
1. Read each file into an array.
2. Apply a Set operation to the two arrays to

create a third array.
3. Apply WriteAllLines to the third array to

create a new text file.

Note: LINQ queries can be used in Step 2
for greater flexibility.

22

How to Search a Text File
1. Read the contents of the file into an array.
2. Use a LINQ query with a Where clause to

search for the sought-after record.
3. If query.count = 0, the record was not found.

Otherwise, the sequence returned by the
query will contain the record.

23

24

The OpenFileDialog Control
• Implements the standard File Open

dialog box
• Found in the Dialogs group of the

Toolbox
• The icon and default name will appear in

a component tray below the Document
window.

25

OpenFileDialog Control

26

The Filter Property
Determines what appears in the box above
the Open button, and what types of files
will be displayed. The setting has the
general form
 text for box|*.ext

Example: Text Files (*.txt)|*.txt

27

Using the OpenFileDialog
Control

• To display the control:
 OpenFileDialog1.ShowDialog()

• After the Open button has been pressed,
the file name selected and its complete
filespec will be contained in the property:

 OpenFileDialog1.FileName

28

Example 3: Task
• Select a text file and display its contents.

• Note: The Filter property of
OpenFileDialog1 is set to

 Text Files (*.txt)|*.txt

29

Example 9: Code
Private Sub btnSelect_Click(...) Handles _
 btnSelect.Click
 Dim textFile As String
 OpenFileDialog1.ShowDialog()
 textFile = OpenFileDialog1.FileName
 lstOutput.DataSource =
 IO.File.ReadAllLines(textFile)
 lstOutput.SelectedItem = Nothing
 End Sub

30

8.2 StreamReaders, StreamWriters,
Structured Exception Handling

• Reading a Text File with a StreamReader
• Creating a Text File with a StreamWriter
• Adding Items to a Text File
• System.IO Namespace
• Structured Exception Handling

31

Reading Data from a Text File
• Data stored in a text file can be read one line

at a time with a StreamReader object.
• The following statement declares a variable

of type StreamReader and specifies the file
to be read.

Dim srVar As IO.StreamReader =
 IO.File.OpenText(filespec)

Note: A pointer is set to the first line of the file.

Reading Data from a Text File
(continued)

• strVar = srVar.ReadLine reads the line
pointed to, assigns the line to the string
variable strVar, and moves the pointer to
the next line of the file.

• The value of srVar.EndOfStream will be True
after the entire file has been read.

• The statement srVar.Close() terminates
communication with the file.

32

Reading Data from a Text File
(continued)

If sr is a variable of type StreamReader, an
entire text file can be read with a loop of
the form
Do Until sr.EndOfStream
 strVar = srVar.ReadLine
 .
 .
Loop

33

34

Writing Data to a Text File
• Data can be placed in a text file one line at a

time with a StreamWriter object.
• The following statement declares a variable

of type StreamWriter and specifies the file to
be created.

Dim swVar As IO.StreamWriter =
 IO.File.CreateText(filespec)

Writing Data to a Text File
(continued)

• swVar.WriteLine(info) initally places the
information into the first line of the file.

• Subsequent statements of that form place
information into lines at the end of the file.

• The statement swVar.Close() terminates
communication with the file.

35

36

Adding Items to a Text File
1. Execute the statement
 Dim swVar As IO.StreamWriter = _
 IO.File.AppendText(filespec)

 where filespec identifies the file.
2. Add lines of data to the end of the file with

the WriteLine method.
3. After all the data have been written into the

file, close the file with swVar.Close().
Note: If the file does not exist, the AppendText
method will create it.

37

Text File Modes
• OpenText – open for input
• CreateText – open for output
• AppendText – open for append
• A file should not be opened in two

different modes at the same time.

38

Avoiding Errors
• Attempting to open a non-existent file for

input brings up a message box titled:
 FileNotFoundException

• There is a method to determine if a file
exists before attempting to open it:

 IO.File.Exists(filespec)

 will return True if the file exists.

39

Testing for the Existence of a
File

Dim sr As IO.StreamReader
If IO.File.Exists(filespec) Then
 sr = IO.File.OpenText(filespec)
Else
 message = "Either no file has yet been "
 message &= "created or the file named"
 message &= filespec & " is not found."
 MessageBox.Show(message, "File Not Found")
End If

40

Deleting Information from a
Text File

• An individual item of a file cannot be
changed or deleted directly.

• A new file must be created by reading each
item from the original file and recording it,
with the single item changed or deleted,
into the new file.

• The old file is then erased, and the new file
renamed with the name of the original file.

41

Delete and Move Methods
• Delete method:
 IO.File.Delete(filespec)

• Move method (to change the filespec of a
file):

 IO.File.Move(oldfilespec, newfilespec)

• Note: The IO.File.Delete and IO.File.Move
methods cannot be used with open files.

42

Imports System.IO
• Simplifies programs that have extensive

file handling.
• Place the statement Imports System.IO
 at the top of the Code Editor, before the
Class frmName statement. Then, there is
no need to insert the prefix “IO.” before the
words StreamReader, StreamWriter, and
File.

43

Structured Exception Handling
• Two types of problems in code:

• Bugs – something wrong with the code
the programmer has written

• Exceptions – errors beyond the control of
the programmer

• Programmer can use the debugger to find
bugs; but must anticipate exceptions in
order to be able to keep the program from
terminating abruptly.

44

How Visual Basic Handles
Exceptions

• An unexpected problem causes Visual Basic
first to throw an exception then to handle it.

• If the programmer does not explicitly include
exception-handling code in the program,
Visual Basic handles exceptions with a
default handler.

• The default exception handler terminates
execution, displays the exception’s message
in a dialog box, and highlights the line of
code where the exception occurred.

45

Exception Example
If the user enters a word or leaves the input
box blank in the following program, an
exception will be thrown:
Dim taxCredit As Double

Private Sub btnComputeCredit_Click(...) _
 Handles btnComputeCredit.Click
 Dim numDependents As Integer
 numDependents =
 CInt(InputBox("How many dependents?"))
 taxCredit = 1000 * numDependents
End Sub

46

Exception Handled by Visual
Basic

47

Try-Catch-Finally Block
Dim taxCredit As Double
Private Sub btnComputeCredit_Click(...) _
 Handles btnComputeCredit.Click
 Dim numDep As Integer, message As String
 Try
 numDep = CInt(InputBox("How many dependents?"))
 Catch
 message = "You did not answer the question " &
 "with an integer value. We will use zero."
MessageBox.Show(message)

 numDependents = 0
 Finally
 taxCredit = 1000 * numDep
 End Try
End Sub

48

Catch Blocks
• Visual Basic allows Try-Catch-Finally

blocks to have one or more specialized
Catch clauses that trap a specific type of
exception.

• The general form of a specialized Catch
clause is Catch exp As ExceptionName

 where the variable exp will be assigned the
name of the exception. The code in this
block will be executed only when the
specified exception occurs.

49

Try-Catch Block Syntax
Try
 normal code
Catch exc1 As FirstException
 exception-handling code for FirstException
Catch exc2 As SecondException
 exception-handling code for SecondException
.
.
Catch
 exception-handling code for any remaining
exceptions

Finally
 clean-up code
End Try

50

Exception Handling and File
Errors

• Exception handling can also catch file
access errors.

• File doesn't exist causes an
IO.FileNotFoundException

• If an attempt is made to delete an open
file, IO.IOException is thrown.

51

8.3 XML
• Format of XML Files
• LINQ to XML

XML Files

• XML formatted files are a more robust
alternative to CSV files.

• XML stands for eXtensible Markup
Language.

52

Sample CSV File

First two lines of USStates.txt

Delaware,DE,1954,759000
Pennsylvania,PA,44817,12296000

 name abbreviation area population

53

XML Formatted Version
<?xml version='1.0'?>
<us_states>
 <state>
 <name>Delaware</name>
 <abbreviation>DE</abbreviation>
 <area>1954</area>
 <population>759000</population>
 </state>

(continued on next slide)
54

XML Version (continued)
 <state>
 <name>Pennsylvania</name>
 <abbreviation>PA</abbreviation>
 <area>44817</area>
 <population>1229600</population>
 </state>
</us_states>

55

XML Lingo

 <area>1954</area> element

start content end
tag tag

56

More XML Lingo
 <state>
 <name>Delaware</name> child of state
 <abbreviation>DE</abbreviation>
 <area>1954</area>
 <population>749000</population>
 </state>

 siblings (descendants of state)

state is a parent of name, abbreviation, area, and
population

57

CSV Format versus XML

• CSV files are loaded into arrays
• XML files are loaded into XElement objects

Dim xmlElementName As XElement =
 XElement.Load(filespec)

58

CSV Format versus XML

• With CSV files, Split is used to access a field.
• With XML files, an expression of the form

<childName>.Value is used to access a field.
Dim stateData As XElement =
 XElement.Load("USState.xml")
Dim query = From st In
 stateData.Descendants("state")
 Let name = st.<name>.Value

59

	Chapter 8 – Text Files
	8.1 Managing Text Files
	CSV File Format
	LINQ Query for USStates.txt
	DataGridView Control
	DataGridView for Query from USStates.txt
	DataGridView Headers
	DataGridView Headers (cont.)
	Altered Headers
	Data in Table
	Modified Data
	Sorting a Text File
	File to Sort: AgeAtInaug.txt
	Sort AgeAtInaug.txt by Age
	File Sorted.txt
	Ways to Combine Two Files
	Set Operations on Arrays
	Concat Operation
	Union Operation
	Intersect Operation
	Except Operation
	Steps to Combine Two Files
	How to Search a Text File
	The OpenFileDialog Control
	OpenFileDialog Control
	The Filter Property
	Using the OpenFileDialog Control
	Example 3: Task
	Example 9: Code
	8.2 StreamReaders, StreamWriters, Structured Exception Handling
	Reading Data from a Text File
	Reading Data from a Text File (continued)
	Reading Data from a Text File (continued)
	Writing Data to a Text File
	Writing Data to a Text File (continued)
	Adding Items to a Text File
	Text File Modes
	Avoiding Errors
	Testing for the Existence of a File
	Deleting Information from a Text File
	Delete and Move Methods
	Imports System.IO
	Structured Exception Handling
	How Visual Basic Handles Exceptions
	Exception Example
	Exception Handled by Visual Basic
	Try-Catch-Finally Block
	Catch Blocks
	Try-Catch Block Syntax
	Exception Handling and File Errors
	8.3 XML
	XML Files
	Sample CSV File
	XML Formatted Version
	XML Version (continued)
	XML Lingo
	More XML Lingo
	CSV Format versus XML
	CSV Format versus XML

