Module 24.1: Overview of the Urinary System

OVERVIEW OF THE URINARY SYSTEM STRUCTURES

- Urinary system (organs of excretion) – composed of a pair of kidneys and urinary tract
 - ______________ filter blood to remove metabolic waste products; modify resulting fluid for following purposes:
 - Fluid and electrolyte homeostasis
 - Acid-base and blood pressure homeostasis

- Urinary tract – composed of a pair of ureters, urinary bladder, and a single urethra
 - Urine exits kidneys through ______________ found on posterior body wall
 - Each ureter empties into urinary bladder on floor of pelvic cavity where urine is stored
 - Urine exits from urinary bladder through ____________; allows urine to exit body

OVERVIEW OF KIDNEY FUNCTION

- Kidneys are site where urinary system regulates homeostatic processes:
 - Filter blood to remove metabolic wastes
 - Regulate fluid and electrolyte balance
 - Influence blood pressure
 - Releasing hormone erythropoietin (EPO)
Kidneys look like beans in both shape and color

Both kidneys are found outside and posterior to peritoneal membrane

Right kidney is found in a slightly inferior position due to liver

Left kidney is positioned between T12–L3 using vertebral column as reference

11th and 12th ribs provide some protection for both kidneys

__________________ – component of endocrine system; found on superior pole of each kidney

Module 24.2: Anatomy of the Kidneys

External Anatomy of the Kidneys

• Three external layers of CT from deep to superficial:

 1. ________________ – thin layer of dense irregular connective tissue; covers exterior of each kidney

 2. ________________ – protects from physical trauma

 3. ________________ – dense irregular CT; anchors each kidney to peritoneum and musculature of posterior abdominal wall

• Hilum – opening on medial surface of kidney where renal artery, vein, nerves, and ureters enter and exit
INTERNAL ANATOMY OF THE KIDNEYS

• Renal cortex and the renal medulla make up *urine-forming* portion of kidney

 ▪ _____________ 90–95% of all kidney’s blood vessels are found in renal cortex

• **Renal columns** – *extensions of renal cortex*; pass through renal medulla toward renal cortex

• Over one million **nephrons** are found within cortex and medulla of each kidney

 ▪ **Renal corpuscle** found in renal cortex

 ▪ **Renal tubule** found mostly in cortex with some tubules dipping into medulla

• Cone-shaped _____________ are found within **renal medulla** separated by renal columns on either side

• Each renal pyramid tapers into a slender papilla

 →

 →

 →

 →

• Smooth muscle tissue contraction within walls of the calyces and renal pelvis propel urine towards ureter

BLOOD SUPPLY OF THE KIDNEYS

• Left and right **renal arteries** are branches of **abdominal aorta**

 1- renal artery →

 2- segmental artery →

 3- interlobar artery →
4- _______________ \(\rightarrow\)

5- interlobular (cortical radiate artery)
- Kidney contains unusual capillary bed system where arterioles both feed and drain capillaries; normally function of a venule

6- afferent arteriole \(\rightarrow\)

7- _______________ \(\rightarrow\)

8- efferent arteriole \(\rightarrow\)

9- _______________ capillaries
- Venous blood exits kidney parallel to arterial pathway

10- interlobular veins \(\rightarrow\)

11- arcuate veins \(\rightarrow\)

12- interlobar vein \(\rightarrow\)

13- _______________

- Renal vein exits kidney from hilum to drain into inferior vena cava

NEPHRON AND THE COLLECTING SYSTEM

- **Nephron** – renal corpuscle and renal tubule
 - **Renal corpuscle** – filters blood
 - 1. _______________ – group of looping fenestrated capillaries
 - 2. **Glomerular capsule** (Bowman’s capsule) – consists of outer parietal & inner visceral layer
 - o _______________ space – hollow region between parietal and visceral layers
• Filtrate from Bowman's capsule enters renal tubule:

 _________________ (pct)

 -

 _________________ (descending limb, ascending limb)

 -

 _________________ (dct)

 -

• Juxtaglomerular apparatus (JGA)

 - composed of both macula densa and juxtaglomerular (JG) cells;

 ▪ Macula densa is a group of cells in contact with modified smooth muscle cells (juxtaglomerular (JG) cells)

 ▪ JGA regulates blood pressure (BP) and glomerular filtration rate (GFR)

 o _________________

 o _________________

 - Collecting system – both medullary collecting duct (cd) and papillary duct that further modify filtrate before it exits kidney

 ▪ cortical cd → medullary cd → _________________

 • Once filtrate enters papillary duct it is known as urine, not filtrate

 • Urine exits papillary duct at papilla of renal pyramid into a _________________

 TYPES OF NEPHRONS

 • _________________ nephrons make up about 80% of nephrons in kidneys
- Renal corpuscles are found in outer renal cortex; have short nephron loops that barely enter renal medulla

- **Juxtamedullary nephrons** – much less common than cortical nephrons
 - Renal corpuscles are found near boundary between renal cortex and medulla; have long nephron loops that travel deep within renal medulla

- **Cortical nephrons** make up about 80% of nephrons in kidneys
 - Renal corpuscles are found in outer renal cortex; have short nephron loops that barely enter renal medulla

Nephrolithiasis

- Formation of renal calculi – crystalline structures composed most commonly of calcium oxalate salts
- Form when concentrations of ions (also sodium ions, hydrogen ions, and uric acid) are present in filtrate in higher than normal amounts; known as supersaturation

→ **Module 24.3: Overview of Renal Physiology**

- Selectively based on size so ________ and __________________ are not filtered and remain in the circulating blood
Smaller substances exit blood to enter capsular space as filtrate

Filtration =

Reclaiming or reabsorbing substances such as water, glucose, amino acids, and electrolytes from tubular fluid to return them into circulating blood

Reabsorption =

Substances are added into filtrate from peritubular capillaries

- Helps maintain electrolyte and acid-base homeostasis; removes toxins from blood that did not enter tubular fluid by filtration

Secretion =

Module 24.4: Renal Physiology I: Glomerular Filtration

- Fenestrated glomerular capillary
 - Fenestrations are large pores
 - Water and small dissolved solutes pass through filtration membrane easily
 - Nitrogenous wastes – group of small substances that are readily filtered; include:
 - ________ and ammonium ions (NH₄⁺) from protein metabolism
 - Creatinine
 - ____________ – product of nucleic acid metabolism
Filtration Membrane:

1. Fenestrated glomerular________________________ cells
2. Basal lamina
3. Podocytes

Amount of filtrate formed by both kidneys in one minute is known as **glomerular filtration rate** (GFR); 125 ml/min (______________)

- **Net filtration pressure** at glomerulus is determined by three driving forces:

 1. **Glomerular hydrostatic pressure** (________________) – blood pressure; higher than average capillary bed hydrostatic pressure

 2. **Glomerular colloid osmotic pressure** (________________) – created mostly by albumin; pulls water back into glomerular capillaries

 3. **Capsular hydrostatic pressure** (________________) – generated as capsular space rapidly fills with new filtrate (10 mm Hg) as fluid can only move so quickly into renal tubule which opposes filtration

- **Net filtration pressure** (NFP) is combination of these three forces:

 \[\text{NFP} = \text{GHP} - (\text{GCOP} + \text{CHP}) \]

- NFP favors filtration as GHP is greater than sum of forces that oppose filtration (GCOP + CHP)

Glomerulonephritis

- Common condition that involves damage to and destruction of glomeruli; **inflammation** of glomerular capillaries and basement membrane results
Inflammation increases blood flow and capillary permeability; increases GHP; causes filtration membrane to become excessively leaky; leads to loss of blood cells and proteins to urine.

FACTORS THAT AFFECT THE GLOMERULAR FILTRATION RATE

Autoregulation – internal kidney mechanisms that work to maintain GFR

- **____________ mechanism** – constriction of smooth muscle in blood vessel walls in response to increases in BP

- **Tubuloglomerular feedback** – uses macula densa of distal renal tubule to control pressure in glomerulus in response to NaCl concentration of filtrate

- Hormonal effects on GFR are part of a larger system that involves regulation of systemic BP and includes angiotensin-II and natriuretic peptides
 - **Renin-angiotensin-aldosterone system (RAAS)** – complex system that maintains systemic BP
 - **Atrial natriuretic peptide (ANP)** – hormone released by heart cells in atria in response to increasing fluid volume; lowers blood volume and BP to reduce workload of the heart
 - ANP increases GFR by dilating afferent arterioles and constricting efferent arterioles; increases glomerular hydrostatic pressure

- Neural regulation of GFR primarily involves _______________________ of ANS

RENNAL FAILURE

- If GFR _____________, kidneys may be unable to carry out their vital functions; called renal failure
 - Renal failure may be a short-term condition known as **acute renal failure** or **acute kidney injury**; resolves with treatment
Renal failure may become **chronic** after three or more months of decreased GFR; commonly seen with long-standing *diabetes mellitus* and *hypertension*

- _______________ – condition that can develop when GFR is less than 50% of normal; leads to buildup of waste products, fluid, electrolytes, as well as acid-base imbalances, all of which can lead to coma, seizures, and death if untreated
- _______________ can be used to treat the signs and symptoms of uremia

The RAAS and Hypertension

- Three classes of drugs have been developed that act on RAAS to **reduce** blood pressure:
 - **ACE inhibitors** – developed from snake venom; block ACE; therefore *inhibit* conversion of angiotensin I to II
 - **Angiotensin-receptor blockers** – block receptors on blood vessels and proximal tubule cells; *prevents* vasoconstriction and *reabsorption of water and sodium*
 - **Aldosterone antagonists** – block effects of aldosterone on distal tubule; decrease reabsorption of sodium and water; leads to *diuretic effect*
- Drugs may **decrease** GFR in patients with *pre-existing renal disease*; must be monitored

→ **Module 24.5: Renal Physiology II: Tubular Reabsorption and Secretion**

<table>
<thead>
<tr>
<th>PRINCIPLES OF TUBULAR REABSORPTION AND SECRETION</th>
</tr>
</thead>
</table>

- In _________________, substances pass from filtrate into interstitial fluid then into peritubular capillaries to re-enter blood
- In **tubular secretion**, substances move in *opposite direction*
• __________________ – substances move from blood into interstitial fluid then into tubule with filtrate

 ▪ Secretion is an **active process**

REABSORPTION AND SECRETION IN THE PROXIMAL TUBULE

• Reabsorption is the main function of ________
 ▪ Large quantity of ions, sodium, potassium, chloride, sulfate, and phosphate; vital to electrolyte homeostasis
 ▪ Almost 100% of nutrients including glucose, amino acids, water-soluble vitamins, and lactic acid

Glycosuria

• **Transport maximum** – especially important with substances such as **glucose**
• If too much glucose is present in filtrate, TM will be reached before all glucose is reabsorbed; excess will appear in urine (**glycosuria**)

• Commonly seen in **diabetes mellitus** – due to defects in production of or response to **insulin**; causes inability of cells to take up glucose; leads to high circulating blood glucose (**hyperglycemia**), high filtrate glucose content, and therefore glucose remaining in urine

Secretion in Proximal tubule

• Ammonium ions (NH₄⁺), creatinine, and small amounts of urea are also secreted

• Drugs such as penicillin and morphine have significant renal secretion; must be taken often (typically 3–5 times per day), because amount lost through renal secretion must be replaced in order to maintain relatively consistent blood levels

REABSORPTION IN THE NEPHRON LOOP

• Once filtrate reaches nephron loop, 60–70% of water and electrolytes and most organic solutes have been reabsorbed (returned to blood)
About 20% of water and 25% of sodium and chloride ions are reabsorbed from loop.

REABSORPTION AND SECRETION – DISTAL TUBULE & COLLECTING SYSTEM

Facultative water reabsorption – water is reabsorbed based on body’s needs

- ____________________ – from adrenal cortex; increases reabsorption of sodium ions from filtrate and secretion of potassium ions into filtrate
- ____________________ (ADH) – from hypothalamus and secreted by posterior pituitary; causes water reabsorption; reduces urine output
- Atrial natriuretic peptide (ANP) – stimulates urinary excretion of sodium ions while it also inhibits release of both aldosterone and ADH

Medullary collecting system – last chance for regulation of fluid, electrolyte, and acid-base balance before filtrate becomes urine

- Impermeable to water in absence of ______________
- Permeable to urea; allows urea to be reabsorbed passively into interstitial fluid
- Cells of proximal tubule secrete hydrogen ions to maintain blood pH

→ **Module 24.6: Renal Physiology III:**

Regulation of Urine Concentration and Volume

PRODUCTION OF DILUTE URINE

- Kidneys produce dilute urine when solute concentration of extracellular fluid is too low
 - Distal tubule and collecting duct become impermeable to water

COUNTERCURRENT MECHANISM & PRODUCTION OF CONCENTRATED URINE
• Kidneys effectively conserve water by producing very concentrated urine (reaching nearly 1200 mOsm) using two mechanisms:
 - Countercurrent mechanism creates and maintains osmotic gradient by exchanging materials in opposite directions between filtrate and interstitial fluids
 - **Countercurrent multiplier** proceeds in following steps
 - NaCl is actively transported ________________ filtrate into interstitial fluid
 - Hypertonic fluid then pulls water out of filtrate in ________________ into interstitial fluid

→ Module 24.8: Urine and Renal Clearance

 • URINE COMPOSITION & URINALYSIS
 - Potassium
 - Chloride
 - Phosphates
 - Sulfates
 - Metabolic wastes such as urea, creatinine, ammonia, and uric acid
 - Small amounts of bicarbonate, calcium, and magnesium may be present
- **Urine color**
 - Darker urine is more concentrated; has less water
 - Lighter urine is less concentrated; has more water
- Urine should be _____________
- Mild odor; strong odor may be caused by diseases, infections, or by ingesting certain foods
- Normal pH (6.0); ranges from ______________
- **Specific gravity** 1.001 (very dilute) to 1.035 (very concentrated)

- **Renal clearance:**
 - Measurement of rate at which kidneys remove a substance from blood
 - For a substance to provide an accurate measure of renal clearance and GFR, substance should be completely filtered and neither reabsorbed nor secreted
 - **Creatinine** – not totally accurate (5–50% in urine arrived via secretion, not filtration)
 - More accurate assessment of GFR can be obtained using **inulin**; neither secreted or absorbed; must be injected

→ **Module 24.9: Urine Transport, Storage, and Elimination**

ANATOMY OF THE URINARY TRACT

Urinary tract consists of two ureters, urinary bladder, and urethra

- **Ureter** is 25–30 cm long and empties into bladder
1. ________________ – most superficial layer; made of fibrous connective tissue

2. ________________ – middle layer; made of smooth muscle cells that contract rhythmically (peristalsis) to propel urine toward urinary bladder

3. ________________ – deepest layer; mucous membrane composed of transitional epithelium

- **Urinary bladder** – hollow, distensible organ found on pelvic cavity floor
 - ________________ – *triangular region* on bladder floor; openings of two ureters are found at each posterior corner
 - Bladder wall:
 1. **Adventitia** – most superficial layer; made of areolar connective tissue
 2. **Detrusor muscle** – middle layer; squeeze bladder; *(internal urethral sphincter)* is found at opening of urethra
 3. ________________ – innermost layer; made of transitional epithelium

- ________________ – drains urine from urinary bladder to outside of body; walls are similar to ureters
 - A second *external urethral sphincter* is formed by **levator ani muscle** – *skeletal muscle* of pelvic floor; allows for voluntary control of urination

- Male and female urethra differ structurally and functionally
 - *Female* – about four cm in length; opens at *external urethral orifice* between vagina and clitoris
 - *Male* – about 20 cm, consists of following three regions:
 1. ________________ urethra
 2. ________________ urethra
 3. ________________ (penile) urethra
• **Micturition** – ____________, discharge of urine from urinary bladder to outside of body

• **Micturition reflex** – reflex arc mediated by **parasympathetic nervous system** when urine fills bladder and stretches walls:
 - **Stretch receptors** send a signal to sacral region of the spinal cord via sensory afferent fibers
 - ________________ efferent fibers stimulate detrusor muscle to contract and internal urethral sphincter to relax; allows for micturition

• **Micturition center** – found in **pons** (CNS); given time and training makes micturition a **voluntary process**
Fluid, Electrolyte, and Acid-Base Homeostasis

Chapter 25

→ Module 25.1: Overview of Fluid, Electrolyte, and Acid-Base Balance

INTRODUCTION TO BODY FLUIDS

Body fluids – blood plasma, interstitial fluid, cytosol, CSF, lymph and exocrine secretions

- Mostly water

 • Fluid balance – maintaining volume and concentration of body’s intracellular (___) and extracellular fluid (___)

 • Water that is gained must equal water that is lost

 • (H₂O in = H₂O out)

 • Multiple factors impact fluid balance including:

 • Amount ingested
 • Medications
 • Digestive activities

ELECTROLYTES

• **Electrolytes** – substances that dissociate into ions, or charged particles

 ▪ Electrolytes obtained from diet equals those lost

 ▪ Controlled mostly by ____________________
• Ion concentration is dependent not only on number of ions in a body fluid, but also on amount of water in body fluid

• Fluid balance is a critical factor that determines electrolyte balance

ACIDS, BASES, and pH

• An acid is a chemical that dissociates in water to release a ______________

 ▪ H⁺ ion plays a role in: digestion of food, inactivation of microbes and pathogens, and intracellular digestion in lysosomes

• A ____________ or alkali, is a chemical that accepts a H⁺ or releases a hydroxide ion (__________)

 ▪ Bicarbonate and other bases are components of buffer systems

• pH scale – used to measure [H⁺] of a solution

 ▪ An increase in hydrogen ion concentration results in a solution with a lower pH

 ▪ Solutions with a lower hydrogen ion concentration have a higher pH

 pH less than 7 are ____________

 pH greater than 7 are ____________

 pH of 7 are ____________

Module 25.2: Fluid Homeostasis

FLUID COMPARTMENTS

• Intracellular fluid (ICF); accounts for about 60% of body’s fluids

• Extracellular fluid (ECF) composed of a variety of body fluids

 ▪ _______________ – about 8% of total body water

 ▪ _______________ – about 32% of total body water

• Solute composition of ECF and ICF varies

 ▪ ____________ , chloride, calcium, and bicarbonate ions are higher in ECF
• ______________, magnesium, sulfate, and monohydrogen phosphate ions higher in cytosol

WATER LOSSES AND GAINS

• Factors that influence water loss – majority of water lost daily is in urine via kidneys

1. Obligatory water loss – (500 ml) urine produced daily irrespective of fluid intake
 - Required to prevent toxic buildup of molecules and electrolyte imbalances

2. Sensible water loss – usually about 100 ml in feces (noticeable amount of water lost)

3. Insensible water loss – usually 600 ml from skin in form of sweat and evaporation
 - 300 ml lost in expired humidified air (an unnoticed amount of daily water loss)
 - Most people lose about ______________ of water daily

Fluctuates with water intake, physical activity, and food intake

Water Gains:

1. Water ingested from foods ()

2. Metabolic water ()

3. Drinking liquid ()

Water intake driven by **thirst mechanism:**

1. Osmoreceptors in hypothalamus
2. Decreased plasma volume that results in a BP drop detected by baroreceptors →
 Stimulates juxtaglomerular cells →
 renin-angiotensin-aldosterone system → angiotensin-II →

 ADH (antidiuretic hormone) plays most important role in balancing water intake
 with water loss, or fluid balance
 ▪ Produced in hypothalamus and released from posterior pituitary
 ▪ ______________________ and ___________________ reabsorb water
 ▪ Increased ADH leads to more water reabsorption that decreases urine volume
 ▪ Decreased ADH leads to more water elimination that increases urine volume

 HORMONAL REGULATION OF FLUID BALANCE

 IMBALANCES OF FLUID HOMEOSTASIS

 ▪ ___________________ – decreased volume and increased concentration of ECF
 ▪ Common causes include: profuse sweating, diarrhea and/or vomiting,
 some endocrine conditions, and diuretic overuse
 ▪ Water loss decreases plasma volume and increases solute concentration;
 increases osmotic pressure

 ▪ Overhydration (hypotonic hydration) – when ECF volume increases;
 decreases its osmotic pressure
ADH secretion is abnormal or an extreme amount of water is consumed in a brief time period (______________)

Electrolyte imbalances, especially sodium ion decreases (hyponatremia) result from diluted ECF

→ Module 25.3: Electrolyte Homeostasis

SODIUM

- Sodium ions are most abundant in ECF
- Regulation of sodium ion concentration:
 - Angiotensin-II and aldosterone are two main hormones that increase Na⁺ retention
 - ANP decreases Na⁺ and water reabsorption

- **Hypernatremia** – elevated Na⁺ concentration; greater than 145 mEq/l; commonly caused by dehydration

- **Hyponatremia** – decreased Na⁺ concentration; less than 135 mEq/l; commonly caused by overhydration

POTASSIUM

- **Potassium ions** are most abundant in ICF
- **Regulation of potassium ion concentration:**
 - Insulin, aldosterone, and epinephrine are hormones that stimulate uptake of K⁺ by cells (endocrine control)

 - Excess K⁺ is secreted into urine and excreted from body (______________)

- **Hyperkalemia** – high K⁺ in plasma
- Potentially fatal; resting membrane potential more positive (cells incapable of functioning)
- **Hypokalemia** – low K⁺ in plasma
 - Commonly caused by diuretics that lead to excess K⁺ loss in urine
 - RMP more negative (less responsive to stimuli)

→ *Module 25.4: Acid-Base Homeostasis*

- Normal H⁺ level in body fluids equals a pH range of about **7.35–7.45**
- pH is maintained by:
 - Respiratory and urinary system using two types of buffer systems
 1. Chemical buffer systems
 2. Physiological buffer systems

Acid-Base Imbalances
- **Acidosis** - body fluid pH of less than 7.35,
 - More H⁺ are added
 - Acidosis causes neurons to become less excitable; leads to signs and symptoms of nervous system depression
- **Alkalosis** - body fluid pH greater than 7.45
 - more base ions are added
 - Increases excitability of neurons causing them to fire APs inappropriately