Lecture Outline: Respiratory System

Hole's HAP [Chapter 19]

I. Introduction

Respiration is the process of exchanging gases between the atmosphere and body cells.

Respiration consists of: Ventilation –

External Respiration -

Transport -

Internal Respiration -

Cellular Respiration -

II. Organization

- 1. Conducting division
- 2. Respiratory division

III. Functions

- 1. Gas exchange
- 2. Conducting passageway
- 3. Protection of respiratory surfaces
- 4. Sound production
- 5. Sense of olfaction

IV. Components

- Upper respiratory system

 nose, nasal cavity, paranasal sinuses, pharynx
- Lower respiratory system
 larynx, trachea, primary bronchi, lungs
 - A. Nose and nasal cavity Nose –

External nares -

Vestibule - space within flexible area, coarse hairs

Nasal septum - perpendicular plate of ethmoid and vomer

Nasal conchae – superior, middle, inferior meatuses –

Hard palate -

Soft palate -

Olfactory region - extends from superior nasal conchae

Internal nares - nasal cavity opens into nasopharynx

B. Sinuses

C. Pharynx

- 1. Nasopharynx -
- 2. Oropharynx -
- 3. Laryngopharynx -

D. Larynx –

Cartilages

- 1. Thyroid shield, hyaline cartilage
- 2. Cricoid hyaline cartilage
- 3. Epiglottis -
- 4. Three pairs of smaller cartilages:
 - arytenoid
 - -
 - cuneiform

Vocal cords

Vestibular folds

- false vocal cords
- -
- Vocal folds
- true vocal cords
- -
- -
- E. Trachea

Length is about 11 cm, open tube

Histology Mucosa –

Submucosa –

Cartilages -

Heimlich maneuver - abdominal thrusts

Tracheostomy -

F. Bronchi Trachea bifurcates into 2 primary bronchi
Primary bronchi Right primary bronchus – larger in diameter, more vertical Left primary bronchus
Branching Primary bronchi → (intrapulmonary bronchi) secondary
bronchi \rightarrow \rightarrow bronchioles \rightarrow
G. Alveoli Approximately 300 million total
Sacs composed of 2 cell types: - Simple squamous epithelium ()
- Septal cells () →
Macrophages
Capillaries surrounding alveoli: RV \rightarrow pulmonary arteries \rightarrow capillaries
\rightarrow \rightarrow LA
H. Lungs –
1. Location:
 Characteristics: Apex – superior end
Base – concave inferior end, rests on diaphragm

Hilus –

Cardiac notch - indentation on left lung

3. Lobes - supplied by lobar bronchi

Right lung -

Left lung -

4. Pleural membranes (serous)

Parietal pleura

Visceral pleura

Pleurisy –

Pneumothorax -

Hemothroax -

V. Respiratory Mucosa

1. Respiratory epithelium PSCCE with Goblet cells –

Stratified Squamous -

PSCCE -

Cuboidal cells with cilia -

- 2. Lamina propria –
- Respiratory defense system
 mucus escalator cilia beat upward
 - filtration traps particles in mucus
 - alveolar macrophages -

VI. Breathing Mechanism

Breathing is the movement of air from outside the body into the bronchial tree and alveoli

- air movements of inspiration and expiration
- changes in the size of the thoracic cavity due to _____
- Lungs at rest have an internal pressure equal to the outside pressure of the thorax
 - 1. Inspiration
 - intra-alveolar pressure decreases to about _____ as the thoracic cavity enlarges
 - atmospheric pressure forces air in the airways
 - shape of thorax changes by contraction of sternocleidomastoid and pectoralis minor muscles
 - 2. Expiration
 - due to elastic recoil of the lung tissues and abdominal organs
 - maximal expiration is due to contraction of abdominal muscles and intercostal muscles
 - Boyle's law

Inverse relationship between _____ and _____

Pressure and airflow – air flows from high to low pressure

Diaphragm flattens as it contracts During inhalation:

→ increase volume of thoracic cavity

86

Pressure changes Atmospheric pressure (1 atm) = 760 mmHg

Inhalation

Exhalation

Intra-alveolar pressure

Intra pleural pressure

4. Respiratory Cycle= inhalation + exhalation

Tidal Volume - amount of air inhaled or exhaled

_____ ml at rest

Eupnea –

5. Respiratory muscles Inspiration – diaphragm, external intercostals

Expiration – passive process

Hyperpnea –

Inspiration – scalenes + same as above

Expiration – internal intercostals and abdominal muscles

6. Respiratory rate Adults

Children

- 7. Respiratory Volumes
 - A. Resting tidal volume =
 - B. Expiratory reserve volume =
 - C. Residual volume =
 - D. Inspiratory reserve volume
 - E. Vital capacity

-

-

8. Alveolar ventilation Minute ventilation – tidal volume multiplied by breathing rate

Alveolar ventilation rate – major factor affecting concentrations of oxygen and carbon dioxide in the alveoli

- tidal volume minus physiologic dead space then multiplied by breathing rate
- 9. Nonrespiratory air movements Coughing

Sneezing

Laughing

Crying

- Hiccuping
- Yawning
- Speech

VII. Control of Respiration

1. Respiratory centers in medulla oblongata

- respiratory rhythmicity center = controls basic rhythm of respiration

2. Pontine respiratory group – formally called ______ and

_____ centers in Pons

Apneustic center – lower pons

- increases inspiration =
- Pneumotaxic center superior pons - coordinates transition between inspiration and expiration
 - -
- 3. Respiratory reflexes -
 - A. Chemoreceptors sensitive to _____, ____, and _____ in blood
 - stimulate respiratory centers →

Central chemoreceptors - located in medulla oblongata

- sensitive to _____ and _____ changes in CSF

Peripheral chemoreceptors in carotid and aortic bodies

B. Baroreceptors

- carotid and aortic sinus detect stretching in vessel walls and blood pressure is adjusted
- Hering-Breuer reflex
 - stretch receptors in lungs prevent over-inflation

-

 inhibitory impulses to respiratory center in medulla oblongata → Factors affecting breathing

- decreased blood oxygen concentration stimulates peripheral chemoreceptors in the carotid and aortic bodies
- motor impulses travel from the respiratory center to the diaphragm and external intercostal muscles
- -

- inhibitory impulses from receptors to respiratory center prevent over-inflation of lungs

VIII. Alveoli

- gas exchanges between the air and blood occur within the alveoli

Alveolar pores =

1. Respiratory membrane 2 cell layer thickness

Simple squamous epithelium -

Endothelium -

- RDS Respiratory Distress syndrome = not enough surfactant produced
- Diffusion through respiratory membrane

 gases are exchanged because of differences in ______
 - A. Dalton's law and partial pressure
 - pressure exerted by a particular gas in a mixture of gases is directly related to the concentration of that gas in the mixture and to the total pressure of the mixture

Atmospheric pressure -

760 mmHg =

Partial pressure of individual gas = % of that gas in atmosphere times total pressure of system

 $\mathsf{Ex.} \ \mathsf{pO}_2$

B. External respiration

- pCO₂ is greater in capillary surrounding alveoli than in alveoli

- -
- CO₂ diffuses from blood \rightarrow
- O₂ diffuses from alveoli →
- C. Internal Respiration
 - pCO₂ is greater in tissues & tissue fluid than in capillaries \rightarrow CO₂ diffuses to blood
 - O₂ diffuses into tissues

3. Oxygen Transport

- Most oxygen binds to hemoglobin to form oxyhemoglobin
- Oxyhemoglobin releases oxygen in the regions of body cells
- Much oxygen is still bound to hemoglobin in the venous blood
- A. Oxygen

Hemoglobin (Hb) bound = 98.5%

Oxygen dissolved in plasma = 1.5%

B. Oxygen Release

Amount of oxygen released from oxyhemoglobin increases as:

- partial pressure of carbon dioxide increases
- the blood pH decreases
- blood temperature increases

Each Hb can carry 4 molecules of O2

If all Hb carry 4 molecules, then _____ saturated.

If Hb average 2 molecules, then _____ saturated.

Factors that affect oxygen dissociation curve:

1) pO₂

- 2) pH ____acid environment (____pH) \rightarrow O₂ dissociates more readily from Hb
- Temperature ____temperature → ____ O₂ released from Hb
- 4) fetal Hb binds more O2 than adult Hb
- 4. Carbon Dioxide Transport
 - dissolved in plasma
 - combined with hemoglobin
 - in the form of bicarbonate ions
 - A. Dissolved in plasma: _____
 - B. Combines with globin part of Hb: ______ - called carbaminohemoglobin

 $CO_2 + Hb \leftrightarrow Hb CO_2$

C. Most transported as bicarbonate ions: _____

 $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H_1 + HCO_3^-$

- 5. Chloride Shift
 - bicarbonate ions diffuse out of RBCs
 - -

When blood reaches lungs, all reactions are reversed:

Cl⁻ moves out of RBC;

 HCO_3^- moves into RBC;

 H_2CO_3 forms $\leftrightarrow CO_2 + H_2O$

CO₂ diffuses into alveoli

Life-Span Changes

Clinical Applications