COURSE OUTLINE

New Course Title
CMN254 Live Sound Reinforcement

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN254</td>
<td>Live Sound Reinforcement</td>
<td>3</td>
</tr>
</tbody>
</table>

Class or Lecture Hours | Laboratory or Work Hours | Clinical or Studio Hours | Practicum, Co-op, Internship | Course Length
2 | 2 | 0 | 0 | 15 week

Performance on an Examination/Demonstration
(Placement Score (if applicable); minimum CLEP score)

Alternate Delivery Methods
(Online, Telecourse [give title of videos])

Catalog Description:
Basic principles of live sound reinforcement. Emphasis on signal flow, acoustic, sound reinforcement set-ups and installation, signal processing, microphone selections and placement. Includes setting up sound systems and mixing live music. Topics include microphones, recording equipment, control consoles, reproduction techniques, amplification, distribution, loudspeaker systems, frequency response, decibels, and dynamic range.

Prerequisites: Co requisites:
EET 102, CMN 153 or permission of the coordinator

Last Revised: Spring 2017

Course Coordinator: Scott Hornick, Assistant Professor of Music – CM 149;
(609) 570-3716; hornicks@mccc.edu

Required Materials:

Live Sound Reinforcement
ISBN: 0-918371-07-4
Author: Scott Hunter Stark
Publisher: Artist Pro Publishing
Date Published: 9th Printing, 2004
**Important Health and Safety Information**

As an entertainment technology student, you are involved in an industry that is dependent upon good hearing. Please protect yours! Tests have indicated that if you are rehearsing, recording, performing, listening to recorded music (especially through portable equipment) and/or attending gigs, concerts and nightclubs, it is very likely that you are experiencing daily sound levels well above those recommended for good aural health.

Damage to your hearing is not reversible. Avoid noisy environments as much as possible. Wear earplugs for your protection. Disposable earplugs are readily available or you can see an audiologist to have specialized hearing protection devices designed specifically for you.

**Students with Disabilities**

Any student in this class who has special needs because of a disability is entitled to receive accommodations. Eligible students at Mercer County Community College are assured services under the Americans with Disabilities Act and Section 504 of the Rehabilitation Act of 1973.

If you believe you are eligible for services, please contact Arlene Stinson, the Director of Academic Support Services. Ms. Stinson’s office is LB221, and she can be reached at (609) 570-3525.

**Academic Integrity**

As per the student handbook, “A student will be guilty of violating academic integrity if he/she (a) knowingly represents the work of others as his/her own, (b) uses or obtains unauthorized assistance in the execution of academic work, or (c) gives fraudulent assistance to another student.” Students should read the Academic Integrity policy in the MCCC Rights and Responsibilities Student Handbook. *Academic Dishonesty will result in failure of this course.*

**Available Resources:**

**Books**

**Websites**
- Handout for students.
**Course Goals.**

Upon Successful completion of this course, the student will be able to:

1. Demonstrate conceptual and working knowledge of the basic principles of the behavior of sound in various environments through classroom discussion, written assignments, and audio laboratory exercises, and use appropriate technical and musical terminology in articulating these concepts; (GE Goals 1, 3 and 4, MCCC Goals 1.1, 1.3, 10.2, 10.3, 11.1-4)

2. Demonstrate conceptual and working knowledge of the basic principles of sound reinforcement systems through classroom discussion, written assignments, and audio laboratory exercises; (GE Goals 1, 3 and 4, MCCC Goals 1.1, 1.3, 10.2, 10.3, 11.1-4)

3. Proficiently set up and operate a variety of live sound reinforcement equipment, including but not limited to: microphones and other transducers, amplifiers and preamplifiers, effects processors, stage monitoring systems, main speaker systems, digital and analogue mixing boards in a variety of scenarios ranging from lectures in small rooms to large outdoor music festivals; (GE Goal 4, MCCC Goals 10.3, 11.3, 11.4)

4. Create typical sound system configurations for live sound reinforcement; Maintain and keep in good working order a variety of live sound reinforcement equipment; (GE Goal 4, MCCC Goals 10.3, 11.3, 11.4)

5. Manage all aspects of a live sound reinforcement event, including booking, staffing, load-in/out, set-up, rigging, sound check, running, and troubleshooting. (GE Goal 4, MCCC Goals 1.2, 4.1, 10.3, 11.3, 11.4.)

6. Read and create stage plots, input lists, and contract riders.(GE Goal 4, MCCC Goal 1.2, 4.1, 10.3, 11.3, 11.4.)

8. Work on teams, teach others, serve customers, negotiate and work well with people from culturally diverse backgrounds. (GE Goal 8, MCCC Goals 1.1-3, 8.1, 9.1.)

**General Education Knowledge Goals**

- **Goal 1. Communication.** Students will communicate effectively in both speech and writing.
- **Goal 2. Mathematics.** Students will use appropriate mathematical and statistical concepts and operations to interpret data and to solve problems.
- **Goal 3. Science.** Students will use the scientific method of inquiry, through the acquisition of scientific knowledge.
- **Goal 4. Technology.** Students will use computer systems or other appropriate forms of technology to achieve educational and personal goals.
- **Goal 8. Diversity.** Students will understand the importance of a global perspective and culturally diverse peoples.
MCCC Core Skills
Institutional Learning Goal 1.
Written and Oral Communication in English: Students will communicate effectively in both speech and writing.
1.1. Students will read, write, and/or speak critically in formal American English.
1.2. Students will generate messages suitable to the appropriate setting and purpose.
1.3. Students will analyze and assess nonverbal, cultural, and gender communication in both small group and public communication settings.
Institutional Learning Goal 4.
Technology: Students will use computer systems or other appropriate forms of technology to achieve educational and personal goals.
4.1. Students will demonstrate proficiency with technological devices and applications in academic and professional settings.
4.2. Students will analyze the impact of emerging technologies on modern society.
Institutional Learning Goal 8.
Diversity and Global Perspective: Students will understand the importance of a global perspective and culturally diverse peoples.
8.1. Students will recognize how geographical, social, economic, and/or historical conditions shape cultural perspectives.
8.2. Students will examine the behaviors and beliefs of individuals and social groups within a diverse society.
8.3. Students will analyze the impact of globalization on the social, economic, and political structures of various nations and cultures.
Institutional Learning Goal 9.
Ethical Reasoning and Action: Students will understand ethical frameworks, issues, and situations.
9.1. Students will identify the strengths, weaknesses, and relevance of different ethical perspectives and their features.
9.2. Students will determine a position on an ethical issue or situation using facts and logical arguments [framed within a common set of terms appropriate to the discipline].
9.3. Students will evaluate the morality and implications of considered actions and their possible outcomes.
Institutional Learning Goal 10.
Information Literacy: Students will recognize when information is needed and have the knowledge and skills to locate, evaluate, and effectively use information for college level work.
10.1. Students will identify resources needed and develop appropriate search strategies.
10.2. Students will recognize factors that affect credibility, quality, and relevance of information.
10.3. Students will use information in order to communicate it to the appropriate audience.
10.4. Students will use information ethically regarding privacy, security, and ownership with a focus on how on preventing plagiarism.
Institutional Learning Goal 11.
Critical Thinking: Students will use critical thinking skills understand, analyze, or apply information or solve problems.
11.1. Students will distinguish among opinions, facts, values, and inferences.
11.2. Students will identify and evaluate diverse perspectives and underlying considerations.
11.3. Students will make informed judgments by focusing on relevant logical and empirical issues.
11.4. Students will assess and solve problems by applying general and discipline-appropriate methods and standards.

Unit Objectives

Unit I: An Introduction to Sound Reinforcement Systems
The student will be able to:
• Write an essay that describes the fundamental building blocks of a sound reinforcement system. Included in the essay will be descriptions and uses for the following components: transducers, amplifiers, signal processors, microphones, mixers and accessory units, equalizers, amplifiers, pre-amplifiers, power amplifiers, speakers and crossovers. (GA; CG2)
• Draw a basic system layout of a simple sound reinforcement system. (GB; CG2, CG4)

Unit II: The Physics of Sound and Hearing
The student will be able to:
• Explain in his/her own words the following terms; sound waves, cycle, reverberation, amplitude, frequency, wavelength, the sine wave, resonance, sound spectra, phase and interference, and other elated terms. (CG1)
• Explain and analyze the relationship between the fundamental frequency, harmonics,
wave form, and phase and how it relates to the musical note and what we hear. (GB, CG1)

- Describe the physical structure of the ear including attributes of the ear such as frequency response, loudness compensation, the time line of hearing, perception of intensity and direction.
- Explain the concepts of the missing fundamental, frequency loudness warp, the precedence effect. Analyze the impact on what one hears given these characteristics. (GB, CG1)

**Unit III: Audio Measurement Terms and Concepts**

*The student will be able to:*

- Analyze a frequency response curve and interpret how it will affect tonal quality. (GB; CG1; CG2)
- Compare and contrast the terms, db, dB spl, dBu, dBm, dbv. (CG1 and 2)
- Describe in writing Basic Gain Structure and analyze a working system’s gain structure. (GB; CG 1 & 2)
- Define and analyze the various forms of distortion that may be introduced in a sound system and evaluate the impact of distortion on the fidelity of a sound system. (GB; CG 1 & 2)
- Use Ohm’s law to calculate power, current, voltage and resistance. (GB; CG 1 & 2)
- Describe the concept of impedance. Identify impedance values for the various audio components. (GB; CG 1 & 2)
- Compare and contract instantaneous peak vs. RMS, vs. average. Calculate the power output of an amplifier using each method. (GB; CG 1& 2)

**Unit IV: Microphones**

*The student will be able to:*

- Identify the different design types of microphone and describe the major characteristics of each type including their structure. (CG1 &2)
- Identify and describe the basic directional patterns of microphones and choose which type is best for different types of music, room acoustics and applications. (GB; CG 1, 2, 3 and 4)
- Interpret pickup pattern variations by frequency using various charts and graphs published by the manufacturer. (GB; CG 1, 2, 3 and 4)
- Write clear instructions on the effective use of microphones for talent. (GA, GB; CG 1,2, 3 & 4)
- Describe the differences between balanced and unbalances microphone circuits and choose the proper type for various applications. (GB; CG 1,2, 3 and 4)
- Identify and describe all issues of microphone impedance, sensitivity and distortion. Choose the appropriate microphone for a given application and level match it to the correct input. (GB; CG 1,2, 3 and 4)
- Write a one page paper of wireless microphones, their types, uses and applications. (GA, GB; CG 1,2, 3 and 4)
Unit V: The Audio Production Console/Mixer

The student will be able to:

• Write a two page paper(with block diagrams) describing basic mixer functions including input attenuation, fader, gain, potentiometer, auxiliary sends, sub masters, masters, etc. (GA&B, CG 1&2)
• Identify and describe the inputs and outputs of a mixer with associated characteristics and the type of equipment or components to which they are connected.
• Achieve a workable gain structure.
• Describe and explain the different between TRS and XLR connectors and draw a pin-out for each that identifies polarity and ground.
• Connect microphones, musical instruments, recorded music sources such as CD players, DAT Players, I-Pod, monitor amps, house amplifiers and external processors to a basic mixer. (GB; CG 1, 2, 3 and 4)
• Operate digital and analogue mixers for live productions. (GB; CG 1, 2, 3 and 4)

Unit VI: Loudspeakers and Associated Components

The student will be able to:

• Identify and explain the various basic design concepts of loudspeakers. (CG1&2)
• Identify and explain the different types of speaker enclosures and discuss the characteristics of each. (CG1&2)
• Identify, explain and discuss the characteristics of basic horns including low, mid and hi frequency horns. (CG1&2)
• Choose the proper type of horn for a given application. (GB, CG1,2,3&4)
• Identify and explain the various types of low and mid frequency cone drivers. (CG1&2)
• Identify and describe the various characteristics of cone drivers such as stiffness, excursion and rigidity. (CG1&2)
• Draw a basic diagram of a cone driver and a horn driver. (CG1&2)
• Interpret driver frequency response curves and on and off-axis response curves, and evaluate the impact on the fidelity of the sound reproduced. (GB, CG1,2,)
• Explain and calculate the impact of speaker impedance, speaker cable wire size, length and resistance variables on the transfer of power to the speaker and the damping factor for the low frequency driver. (GB, CG1,2,)
• Describe the concept of a passive and active speaker crossover including crossover frequency and crossover slope. (CG1&2)
• Interpret the frequency response curves of crossover networks. (GB, CG1,2,)
• Describe the physical construction of and inductor and a capacitor and explain the electrical characteristic of each. (CG1,2,)
• Calculate the reactance of an inductor and capacitor at any given frequency. (GB, CG1,2,)
• Design a simple 6db/octave three way passive crossover network. (GB, CG1,2,)
• Choose a speaker system for any given sound reinforcement application. (GB, CG1,2,)
• Connect a loudspeaker system with proper placement in an assigned venue. (GB, CG1,2,3&4)
• Calculate impedance loads when connecting multiple speakers in series or parallel. (GB, CG1,2)
**Unit VII: Amplifiers**

The student will be able to:

- Describe the differences between line level amplifiers, pre-amplifiers, power amplifiers, RF amplifiers and differential amplifiers by outlining the characteristics of each and identifying the typical applications for each. (CG1&2)
- Understand and interpret manufacturer’s specification sheets for power amplifier and use that information to choose the appropriate power amplifier based on the venue, the maximum sound levels required and speaker efficiency. (CG1&2)
- Connect multiple speakers to the power amplifier consistent with the minimum impedance load tolerated by the power amplifier. (GB, CG1,2,3&4)

**Unit VIII: Equalizers and Signal Processing**

The student will be able to:

- Identify and describe the basic equalizer design types. (Fixed, cut-only, fixed frequency, sweepable, parametric, etc.) (CG1&2)
- Interpret frequency response curves to assist in setting up house and channel equalization. (GB, CG1,2,3&4)
- Connect and set-up automated and manual equalizers and perform a house equalization. (GB, CG1,2,3&4)
- Identify and describe the basic kinds of additional outboard and/or optional equipment which can facilitate the goals of sound reinforcement. (CG1&2)
- Describe each of the characteristics of compressors and limiters and identify scenarios that require their use. (CG1&2)
- Connect and properly adjust built-in and external compressors and limiters. (GB, CG1,2,3&4)
- Describe the characteristics of delay/echo and reverb units and identify each of the parameters required for adjustment.
- Connect, set-up and use delay/echo and reverb units. (GB, CG1,2,3&4)
- Compare and contrast analog and digital reverb and echo units. (CG1&2)
- Use equalizers and signal processing units during live performances. (GB, CG1,2,3&4)

**Unit IX: System Wiring**

The student will be able to:

- Cable multiple speakers using the correct wire size based on the parameters of speakers impedance, cable length and power required for the desired house sound levels. (GB, CG1,2,3&4)
- Effectively ground the sound reinforcement system using standard safety requirements to reduce or eliminate shock hazards. (GB, CG1,2,3&4)
- Cable low level and line level devices. (GB, CG1,2,3&4)
- Wire 3 pin XLR connectors, balance 1/4” TRS connectors and unbalanced TRS connectors. (GB, CG1,2,3&4)
- Identify and describe the typical audio connectors and adapters used in a sound reinforcement system. (GB, CG1,2,3&4)
**Unit X: The Practicum**

*The student will be able to:*

- Maintain and keep in good working order a variety of live sound reinforcement equipment. (CG 2,3,&5)
- Manage various aspects of a live sound reinforcement event, including booking, staffing, load-in/out, set-up, rigging, sound check, running, and troubleshooting. (GB,D&E; CG1,2,3,6&7)
- Read and create stage plots, input lists, and contract riders. (GB,D&E; CG1,2,3,6&7)
- Work on teams, teach others, serve customers, negotiate and work well with people from culturally diverse backgrounds. (GF&G; CG8)

**Evaluation of Student Learning.**

*Students’ achievement of the course objectives will be evaluated through the use of the following*

- Active participation in class
- A series of Unit tests assessing students’ comprehension of basic sound terminology and practices. (CG1&2)
- A series of essays and short papers assessing students’ comprehension of basic concepts and practices. (GA&B, CG1&2)
- A practicum where students will set-up and run sound in an approved local venue. (CG 1-8, Goals B,F,G)
- The final project will be the design of a sound system for a small venue. Students are to research and prepare a 1,000 word (minimum) MS Word document outlining the proposed purchase of a sound system for the Studio Theatre (CM122) or an approved venue proposed by the student. As well as outlining the general performance requirements and listing all of the individual components, students must gather prices (either new or second-hand) and include a cost breakdown and total price to assemble and operate this ‘ideal’ system. This planned sound system should not include backline equipment (for example: guitar amps, drums, keyboards etc.) (GA,B,D & E, CG1,2&4)

<table>
<thead>
<tr>
<th>Evaluation Tools</th>
<th>Percentage Of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Tests</td>
<td>20%</td>
</tr>
<tr>
<td>Unit essays and papers</td>
<td>20%</td>
</tr>
<tr>
<td>Practicum</td>
<td>25%</td>
</tr>
<tr>
<td>Final design project</td>
<td>30%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
### PRACTICUM EVALUATION OF ETT 208 STUDENTS

**Entertainment Technology Program**

**Directions:** Please complete this form and return to the Entertainment Technology Coordinator: Robert Terrano, ET110, 609-570-3828.

<table>
<thead>
<tr>
<th>Student’s Name:</th>
<th>Your Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company/Org:</td>
<td></td>
</tr>
<tr>
<td>Title:</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Very Good</th>
<th>Average</th>
<th>Marginal</th>
<th>Unsatisfactory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to take direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpersonal Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work with people of culturally diverse background</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration with the Design team</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creation of Stage Plots and Input Lists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load-in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I would rate the student’s overall performance as:

- [ ] Excellent
- [ ] Very Good
- [ ] Average
- [ ] Marginal
- [ ] Unsatisfactory

Indicate behaviors which may help and/or hinder this student’s advancement:

How well does this student interact with peers and the design team or producer?